Amazon’s 23 papers at EMNLP

自然语言处理
海外精选
海外精选的内容汇集了全球优质的亚马逊云科技相关技术内容。同时,内容中提到的“AWS” 是 “Amazon Web Services” 的缩写,在此网站不作为商标展示。
0
0
{"value":"Of the 23 papers that Amazon researchers are presenting at next week's Conference on Empirical Methods in Natural Language Processing (++[EMNLP](https://www.amazon.science/conferences-and-events/emnlp-2021)++), the majority concentrate on two topics: ++[natural-language understanding](https://www.amazon.science/tag/nlu)++, or the semantic interpretation of text, and ++[question answering](https://www.amazon.science/tag/question-answering)++, both of which are important across Amazon businesses, including Alexa, Amazon Web Services, and the Amazon Store. \n\nThe remaining 10 papers cover a range of topics, from self-learning and information retrieval to language modeling and machine translation.\n\n![image.png](1)\n\nThe framework of the meta teacher-student network (MetaTS), a teacher-student framework that allows the teacher to dynamically adapt its pseudoannotation strategies by the student’s feedback. Figure from \"MetaTS: Meta teacher-student network for multilingual sequence labeling with minimal supervision\".\n\nWithin the area of **natural-language understanding**, Amazon researchers apply a battery of techniques — such as ++[semi-supervised learning](https://www.amazon.science/tag/semi-supervised-learning)++, ++[few-shot learning](https://www.amazon.science/tag/few-shot-learning)++, and ++[contrastive learning](https://www.amazon.science/tag/contrastive-learning)++ — to a variety of subproblems, such as visual referring-expression recognition, or identifying which object in an image a natural-language expression refers to; coreference resolution, or determining whether different terms refer to the same entity; and dealing with distribution shift, or a mismatch between the distribution of data at inference time and the distribution in the training set.\n\n- ++[**Feedback attribution for counterfactual bandit learning in multi-domain spoken language understanding**](https://www.amazon.science/publications/feedback-attribution-for-counterfactual-bandit-learning-in-multi-domain-spoken-language-understanding)++\n++[Tobias Falke](https://www.amazon.science/author/tobias-falke)++, ++[Patrick Lehnen](https://www.amazon.science/author/patrick-lehnen)++\n- ++[**MetaTS: Meta teacher-student network for multilingual sequence labeling with minimal supervision**](https://www.amazon.science/publications/metats-meta-teacher-student-network-for-multilingual-sequence-labeling-with-minimal-supervision)++\n++[Zheng Li](https://www.amazon.science/author/zheng-li)++, ++[Danqing Zhang](https://www.amazon.science/author/danqing-zhang)++, ++[Tianyu Cao](https://www.amazon.science/author/tianyu-cao)++, Ying Wei, ++[Yiwei Song](https://www.amazon.science/author/yiwei-song)++, ++[Bing Yin](https://www.amazon.science/author/bing-yin)++\n- ++[**Mind the context: The impact of contextualization in neural module networks for grounding visual referring expression**](https://www.amazon.science/publications/mind-the-context-the-impact-of-contextualization-in-neural-module-networks-for-grounding-visual-referring-expression)++\nArjun R. Akula, ++[Spandana Gella](https://www.amazon.science/author/spandana-gella)++, Keze Wang, Song-Chun Zhu, Siva Reddy\n- ++[**Nearest neighbor few-shot learning for cross-lingual classification**](https://www.amazon.science/publications/nearest-neighbor-few-shot-learning-for-cross-lingual-classification)++\nM. Saiful Bari, ++[Batool Haider](https://www.amazon.science/author/batool-haider)++, ++[Saab Mansour\\n](https://www.amazon.science/author/saab-mansour)++\n- ++[**ODIST: Open world classification via distributionally shifted instances**](https://www.amazon.science/publications/odist-open-world-classification-via-distributionally-shifted-instances)++\n++[Lei Shu](https://www.amazon.science/author/lei-shu)++, ++[Yassine Benajiba](https://www.amazon.science/author/yassine-benajiba)++, ++[Saab Mansour](https://www.amazon.science/author/saab-mansour)++, ++[Yi Zhang](https://www.amazon.science/author/yi-zhang)++\n- ++[**Pairwise supervised contrastive learning of sentence representations**](https://www.amazon.science/publications/pairwise-supervised-contrastive-learning-of-sentence-representations)++\n++[Dejiao Zhang](https://www.amazon.science/author/deijao-zhang)++, Shang-Wen Li, ++[Wei Xiao](https://www.amazon.science/author/wei-xiao)++, ++[Henghui Zhu](https://www.amazon.science/author/Henghui-Zhu)++, ++[Ramesh Nallapati](https://www.amazon.science/author/ramesh-nallapati)++, ++[Andrew O. Arnold](https://www.amazon.science/author/andrew-o-arnold)++, ++[Bing Xiang](https://www.amazon.science/author/bing-xiang)++\n- ++[**Sequential cross-document coreference resolution**](https://www.amazon.science/publications/sequential-cross-document-coreference-resolution)++\nEmily Allaway, ++[Shuai Wang](https://www.amazon.science/author/shuai-wang\\t)++, ++[Miguel Ballesteros](https://www.amazon.science/author/miguel-ballesteros)++\n\nAmazon researchers’ work on **question answering** includes helping conversational-AI agents suggest follow-up questions during interactions with customers; filtration of unanswerable questions to prevent the waste of system resources; and few-shot learning.\n\n![image.png](https://dev-media.amazoncloud.cn/6ca139001ba040749f8db8c1b54d7380_image.png)\n\nA new approach to few-shot learning for question answering formulates the task as masked span filling during fine-tuning. This enables the use of the pretraining objective during fine-tuning, making the system extremely sample efficient. Top: Pretraining framework; middle: existing fine-tuning frameworks; bottom: proposed fine-tuning framework. Figure from \"FewshotQA: A simple framework for few-shot learning of question answering tasks using pre-trained text-to-text models\".\n\n- ++[**End-to-end entity resolution and question answering using differentiable knowledge graphs**](https://www.amazon.science/publications/end-to-end-entity-resolution-and-question-answering-using-differentiable-knowledge-graphs)++\nArmin Oliya,++[Amir Saffari](https://www.amazon.science/author/amir-saffari)++, ++[Priyanka Sen](https://www.amazon.science/author/priyanka-sen)++, ++[Tom Ayoola](https://www.amazon.science/author/tom-ayoola)++\n\n- ++[**Expanding end-to-end question answering on differentiable knowledge graphs with intersection**](https://www.amazon.science/publications/expanding-end-to-end-question-answering-on-differentiable-knowledge-graphs-with-intersection)++\n++[Priyanka Sen](https://www.amazon.science/author/priyanka-sen)++, ++[Amir Saffari](https://www.amazon.science/author/amir-saffari)++, Armin Oliya\n- ++[**FewshotQA: A framework for few-shot learning of question answering tasks using pre-trained text-to-text models**](https://www.amazon.science/publications/fewshotqa-a-framework-for-few-shot-learning-of-question-answering-tasks-using-pre-trained-text-to-text-models)++\n++[Rakesh Chada](https://www.amazon.science/author/rakesh-chada)++, ++[Pradeep Natarajan](https://www.amazon.science/author/pradeep-natarajan)++\n\n- ++[**Generating self-contained and summary-centric question answer pairs via differentiable reward imitation learning**](https://www.amazon.science/publications/generating-self-contained-and-summary-centric-question-answer-pairs-via-differentiable-reward-imitation-learning)++\n++[Li Zhou](https://www.amazon.science/author/li-zhou)++, ++[Kevin Small](https://www.amazon.science/author/kevin-small)++, ++[Yong Zhang](https://www.amazon.science/author/yong-zhang)++, ++[Sandeep Atluri](https://www.amazon.science/author/sandeep-atluri)++\n\n- ++[**Will this question be answered? Question filtering via answer model distillation for efficient question answering**](https://www.amazon.science/publications/will-this-question-be-answered-question-filtering-via-answer-model-distillation-for-efficient-question-answering)++\n++[Siddhant Garg](https://www.amazon.science/author/siddhant-garg)++, ++[Alessandro Moschitti](https://www.amazon.science/author/alessandro-moschitti)++\n\n- ++[**Reference-based weak supervision for answer sentence selection using web data**](https://www.amazon.science/publications/reference-based-weak-supervision-for-answer-sentence-selection-using-web-data)++\nVivek Krishnamurthy, ++[Thuy Vu](https://www.amazon.science/author/thuy-vu)++, ++[Alessandro Moschitti](https://www.amazon.science/author/alessandro-moschitti)++\n\nAmazon Web Services researchers address questions of **fairness** in a paper on ++[mitigating gender bias](https://www.amazon.science/blog/emnlp-mitigating-bias-and-getting-closer-to-the-user)++ in machine translation models.\n\n- ++[**GFST: Gender-filtered self-training for more accurate gender in translation**](https://www.amazon.science/publications/gfst-gender-filtered-self-training-for-more-accurate-gender-in-translation)++\nPrafulla Kumar Choubey, ++[Anna Currey](https://www.amazon.science/author/anna-currey)++, ++[Prashant Mathur](https://www.amazon.science/author/prashant-mathur)++, ++[Georgiana Dinu](https://www.amazon.science/author/georgiana-dinu)++\n\nIn the area of **information retrieval**, Amazon papers investigate an integrated model for conversational search and the identification of counterfactual claims in product reviews that can create a misleading impression of the reviewer’s sentiment.\n\n- ++[**End-to-end conversational search for online shopping with utterance transfer**](https://www.amazon.science/publications/end-to-end-conversational-search-for-online-shopping-with-utterance-transfer)++\nLiqiang Xiao, ++[Jun Ma](https://www.amazon.science/author/jun-ma)++, Xin Luna Dong, Pascual Martinez-Gomez, ++[Nasser Zalmout](https://www.amazon.science/author/nasser-zalmout)++, ++[Chenwei Zhang](https://www.amazon.science/author/chenwei-zhang)++, ++[Tong Zhao](https://www.amazon.science/author/tong-zhao)++, Hao He, Yaohui Jin\n\n- ++[**I wish I would have loved this one, but I didn’t: A multilingual dataset for counterfactual detection in product reviews**](https://www.amazon.science/publications/i-wish-i-would-have-loved-this-one-but-i-didnt-a-multilingual-dataset-for-counterfactual-detection-in-product-reviews)++\nJames O'Neill, ++[Polina Rozenshtein](https://www.amazon.science/author/polina-rozenshtein)++, ++[Ryuichi Kiryo](https://www.amazon.science/author/ryuichi-kiryo)++, ++[Motoko Kubota](https://www.amazon.science/author/motoko-kubota)++, ++[Danushka Bollegala](https://www.amazon.science/author/danushka-bollegala)++\n\nA pair of Amazon papers look at the type of **language modeling** that accounts for so much of the recent success of natural-language-processing models.\n\n- ++[**How much pretraining data do language models need to learn syntax?**](https://www.amazon.science/publications/how-much-pretraining-data-do-language-models-need-to-learn-syntax)++\nLaura Perez-Mayos, ++[Miguel Ballesteros](https://www.amazon.science/author/miguel-ballesteros)++, Leo Wanner\n- ++[**Using optimal transport as alignment objective for fine-tuning multilingual contextualized embeddings**](https://www.amazon.science/publications/using-optimal-transport-as-alignment-objective-for-fine-tuning-multilingual-contextualized-embeddings)++\n ++[Sawsan Alqahtani](https://www.amazon.science/author/sawsan-alqahtan)++, ++[Garima Lalwani](https://www.amazon.science/author/garima-lalwani)++, ++[Yi Zhang](https://www.amazon.science/author/yi-zhang)++, ++[Salvatore Romeo](https://www.amazon.science/author/salvatore-romeo)++, ++[Saab Mansour](https://www.amazon.science/author/saab-mansour)++\n\nAlexa researchers combined data mixing and elastic weight consolidation to improve the adaptation of **machine translation** models to new tasks.\n\n- ++[**Improving the quality trade-off for neural machine translation multi-domain adaptation**](https://www.amazon.science/publications/improving-the-quality-trade-off-for-neural-machine-translation-multi-domain-adaptation)++\n++[Eva Hasler](https://www.amazon.science/author/eva-hasler)++, ++[Tobias Domhan](https://www.amazon.science/author/tobias-domhan)++, ++[Jonay Trenous](https://www.amazon.science/author/jonay-trenous)++, ++[Ke Tran](https://www.amazon.science/author/ke-tran)++, ++[Bill Byrne](https://www.amazon.science/author/bill-bryne)++, ++[Felix Hieber](https://www.amazon.science/author/felix-hieber)++\n\n**Paraphrase generation** varies the surface form of sentences while preserving their semantic content, so it can help augment training data for other natural-language-processing tasks.\n\n- ++[**Learning to selectively learn for weakly-supervised paraphrase generation**](https://www.amazon.science/publications/learning-to-selectively-learn-for-weakly-supervised-paraphrase-generation)++\nKaize Ding, ++[Dingcheng Li](https://www.amazon.science/author/dingcheng-li)++, ++[Alexander Hanbo Li](https://www.amazon.science/author/alexander-hanbo-li)++, ++[Xing Fan](https://www.amazon.science/author/xing-fan)++, ++[Chenlei (Edward) Guo](https://www.amazon.science/author/chenlei-guo)++, ++[Yang Liu](https://www.amazon.science/author/yang-liu)++, Huan Liu\n\n**Self-learning** is the use of implicit feedback signals to automatically improve machine learning models, without the need for human intervention.\n\n![image.png](https://dev-media.amazoncloud.cn/6b343e71d0fe40f5862071328cd3e4ef_image.png)\n\nInterrupting a conversational-AI agent to rephrase a request provides an implicit-feedback signal that can be used to automatically label training data, which can help improve the underlying machine learning model. Figure from \"A scalable framework for learning from implicit user feedback to improve natural language understanding in large-scale conversational AI systems\".\n\n- ++[**A scalable framework for learning from implicit user feedback to improve natural language understanding in large-scale conversational AI systems**](https://www.amazon.science/publications/a-scalable-framework-for-learning-from-implicit-user-feedback-to-improve-natural-language-understanding-in-large-scale-conversational-ai-systems)++\n++[Sunghyun Park](https://www.amazon.science/author/sunghyun-park)++, ++[Han Li](https://www.amazon.science/author/han-li)++, ++[Ameen Patel](https://www.amazon.science/author/ameen-patel)++, Sidharth Mudgal, ++[Sungjin Lee](https://www.amazon.science/author/sungjin-lee)++, Young-Bum Kim, ++[Spyros Matsoukas](https://www.amazon.science/author/spyros-matsoukas)++, ++[Ruhi Sarikaya](https://www.amazon.science/author/ruhi-sarikaya)++\n\n- ++[**Contextual rephrase detection for reducing friction in dialogue system**](https://www.amazon.science/publications/contextual-rephrase-detection-for-reducing-friction-in-dialogue-system)++\n Zhuoyi Wang, ++[Saurabh Gupta](https://www.amazon.science/author/saurabh-gupta)++, ++[Jie Hao](https://www.amazon.science/author/jie-hao)++, ++[Xing Fan](https://www.amazon.science/author/xing-fan)++, ++[Dingcheng Li](https://www.amazon.science/author/dingcheng-li)++, ++[Alexander Hanbo Li](https://www.amazon.science/author/alexander-hanbo-li)++, ++[Chenlei (Edward) Guo](https://www.amazon.science/author/chenlei-guo)++\n\n**Text summarization** is a widely studied problem in natural-language processing, and a new paper from Amazon Web Services considers the particular problems it presents in the context of dialogue.\n\n- ++[**A bag of tricks for dialogue summarization**](https://www.amazon.science/publications/a-bag-of-tricks-for-dialogue-summarization)++\nMuhammad Khalifa, ++[Miguel Ballesteros](https://www.amazon.science/author/miguel-ballesteros)++, ++[Kathleen McKeown](https://www.amazon.science/author/kathleen-mckeown)++\n\nFor more on Amazon's involvement at EMNLP, see our ++[interview with Georgiana Dinu](https://www.amazon.science/blog/emnlp-mitigating-bias-and-getting-closer-to-the-user)++, an applied scientist with Amazon Web Services and a conference area chair for machine learning for natural-language-processing.\n\nABOUT THE AUTHOR\n\n#### **[Larry Hardesty](https://www.amazon.science/author/larry-hardesty)**\n\nLarry Hardesty is the editor of the Amazon Science blog. Previously, he was a senior editor at MIT Technology Review and the computer science writer at the MIT News Office.\n\n\n\n\n\n\n\n\n","render":"<p>Of the 23 papers that Amazon researchers are presenting at next week’s Conference on Empirical Methods in Natural Language Processing (<ins><a href=\\"https://www.amazon.science/conferences-and-events/emnlp-2021\\" target=\\"_blank\\">EMNLP</a></ins>), the majority concentrate on two topics: <ins><a href=\\"https://www.amazon.science/tag/nlu\\" target=\\"_blank\\">natural-language understanding</a></ins>, or the semantic interpretation of text, and <ins><a href=\\"https://www.amazon.science/tag/question-answering\\" target=\\"_blank\\">question answering</a></ins>, both of which are important across Amazon businesses, including Alexa, Amazon Web Services, and the Amazon Store.</p>\n<p>The remaining 10 papers cover a range of topics, from self-learning and information retrieval to language modeling and machine translation.</p>\n<p><img src=\\"\\" alt=\\"image.png\\" rel=\\"1\\" /></p>\n<p>The framework of the meta teacher-student network (MetaTS), a teacher-student framework that allows the teacher to dynamically adapt its pseudoannotation strategies by the student’s feedback. Figure from “MetaTS: Meta teacher-student network for multilingual sequence labeling with minimal supervision”.</p>\n<p>Within the area of <strong>natural-language understanding</strong>, Amazon researchers apply a battery of techniques — such as <ins><a href=\\"https://www.amazon.science/tag/semi-supervised-learning\\" target=\\"_blank\\">semi-supervised learning</a></ins>, <ins><a href=\\"https://www.amazon.science/tag/few-shot-learning\\" target=\\"_blank\\">few-shot learning</a></ins>, and <ins><a href=\\"https://www.amazon.science/tag/contrastive-learning\\" target=\\"_blank\\">contrastive learning</a></ins> — to a variety of subproblems, such as visual referring-expression recognition, or identifying which object in an image a natural-language expression refers to; coreference resolution, or determining whether different terms refer to the same entity; and dealing with distribution shift, or a mismatch between the distribution of data at inference time and the distribution in the training set.</p>\n<ul>\\n<li><ins><a href=\\"https://www.amazon.science/publications/feedback-attribution-for-counterfactual-bandit-learning-in-multi-domain-spoken-language-understanding\\" target=\\"_blank\\"><strong>Feedback attribution for counterfactual bandit learning in multi-domain spoken language understanding</strong></a></ins><br />\\n<ins><a href=\\"https://www.amazon.science/author/tobias-falke\\" target=\\"_blank\\">Tobias Falke</a></ins>, <ins><a href=\\"https://www.amazon.science/author/patrick-lehnen\\" target=\\"_blank\\">Patrick Lehnen</a></ins></li>\n<li><ins><a href=\\"https://www.amazon.science/publications/metats-meta-teacher-student-network-for-multilingual-sequence-labeling-with-minimal-supervision\\" target=\\"_blank\\"><strong>MetaTS: Meta teacher-student network for multilingual sequence labeling with minimal supervision</strong></a></ins><br />\\n<ins><a href=\\"https://www.amazon.science/author/zheng-li\\" target=\\"_blank\\">Zheng Li</a></ins>, <ins><a href=\\"https://www.amazon.science/author/danqing-zhang\\" target=\\"_blank\\">Danqing Zhang</a></ins>, <ins><a href=\\"https://www.amazon.science/author/tianyu-cao\\" target=\\"_blank\\">Tianyu Cao</a></ins>, Ying Wei, <ins><a href=\\"https://www.amazon.science/author/yiwei-song\\" target=\\"_blank\\">Yiwei Song</a></ins>, <ins><a href=\\"https://www.amazon.science/author/bing-yin\\" target=\\"_blank\\">Bing Yin</a></ins></li>\n<li><ins><a href=\\"https://www.amazon.science/publications/mind-the-context-the-impact-of-contextualization-in-neural-module-networks-for-grounding-visual-referring-expression\\" target=\\"_blank\\"><strong>Mind the context: The impact of contextualization in neural module networks for grounding visual referring expression</strong></a></ins><br />\\nArjun R. Akula, <ins><a href=\\"https://www.amazon.science/author/spandana-gella\\" target=\\"_blank\\">Spandana Gella</a></ins>, Keze Wang, Song-Chun Zhu, Siva Reddy</li>\n<li><ins><a href=\\"https://www.amazon.science/publications/nearest-neighbor-few-shot-learning-for-cross-lingual-classification\\" target=\\"_blank\\"><strong>Nearest neighbor few-shot learning for cross-lingual classification</strong></a></ins><br />\\nM. Saiful Bari, <ins><a href=\\"https://www.amazon.science/author/batool-haider\\" target=\\"_blank\\">Batool Haider</a></ins>, <ins><a href=\\"https://www.amazon.science/author/saab-mansour\\" target=\\"_blank\\">Saab Mansour<br />\\n</a></ins></li>\n<li><ins><a href=\\"https://www.amazon.science/publications/odist-open-world-classification-via-distributionally-shifted-instances\\" target=\\"_blank\\"><strong>ODIST: Open world classification via distributionally shifted instances</strong></a></ins><br />\\n<ins><a href=\\"https://www.amazon.science/author/lei-shu\\" target=\\"_blank\\">Lei Shu</a></ins>, <ins><a href=\\"https://www.amazon.science/author/yassine-benajiba\\" target=\\"_blank\\">Yassine Benajiba</a></ins>, <ins><a href=\\"https://www.amazon.science/author/saab-mansour\\" target=\\"_blank\\">Saab Mansour</a></ins>, <ins><a href=\\"https://www.amazon.science/author/yi-zhang\\" target=\\"_blank\\">Yi Zhang</a></ins></li>\n<li><ins><a href=\\"https://www.amazon.science/publications/pairwise-supervised-contrastive-learning-of-sentence-representations\\" target=\\"_blank\\"><strong>Pairwise supervised contrastive learning of sentence representations</strong></a></ins><br />\\n<ins><a href=\\"https://www.amazon.science/author/deijao-zhang\\" target=\\"_blank\\">Dejiao Zhang</a></ins>, Shang-Wen Li, <ins><a href=\\"https://www.amazon.science/author/wei-xiao\\" target=\\"_blank\\">Wei Xiao</a></ins>, <ins><a href=\\"https://www.amazon.science/author/Henghui-Zhu\\" target=\\"_blank\\">Henghui Zhu</a></ins>, <ins><a href=\\"https://www.amazon.science/author/ramesh-nallapati\\" target=\\"_blank\\">Ramesh Nallapati</a></ins>, <ins><a href=\\"https://www.amazon.science/author/andrew-o-arnold\\" target=\\"_blank\\">Andrew O. Arnold</a></ins>, <ins><a href=\\"https://www.amazon.science/author/bing-xiang\\" target=\\"_blank\\">Bing Xiang</a></ins></li>\n<li><ins><a href=\\"https://www.amazon.science/publications/sequential-cross-document-coreference-resolution\\" target=\\"_blank\\"><strong>Sequential cross-document coreference resolution</strong></a></ins><br />\\nEmily Allaway, <ins><a href=\\"https://www.amazon.science/author/shuai-wang\\" target=\\"_blank\\">Shuai Wang</a></ins>, <ins><a href=\\"https://www.amazon.science/author/miguel-ballesteros\\" target=\\"_blank\\">Miguel Ballesteros</a></ins></li>\n</ul>\\n<p>Amazon researchers’ work on <strong>question answering</strong> includes helping conversational-AI agents suggest follow-up questions during interactions with customers; filtration of unanswerable questions to prevent the waste of system resources; and few-shot learning.</p>\\n<p><img src=\\"https://dev-media.amazoncloud.cn/6ca139001ba040749f8db8c1b54d7380_image.png\\" alt=\\"image.png\\" /></p>\n<p>A new approach to few-shot learning for question answering formulates the task as masked span filling during fine-tuning. This enables the use of the pretraining objective during fine-tuning, making the system extremely sample efficient. Top: Pretraining framework; middle: existing fine-tuning frameworks; bottom: proposed fine-tuning framework. Figure from “FewshotQA: A simple framework for few-shot learning of question answering tasks using pre-trained text-to-text models”.</p>\n<ul>\\n<li>\\n<p><ins><a href=\\"https://www.amazon.science/publications/end-to-end-entity-resolution-and-question-answering-using-differentiable-knowledge-graphs\\" target=\\"_blank\\"><strong>End-to-end entity resolution and question answering using differentiable knowledge graphs</strong></a></ins><br />\\nArmin Oliya,<ins><a href=\\"https://www.amazon.science/author/amir-saffari\\" target=\\"_blank\\">Amir Saffari</a></ins>, <ins><a href=\\"https://www.amazon.science/author/priyanka-sen\\" target=\\"_blank\\">Priyanka Sen</a></ins>, <ins><a href=\\"https://www.amazon.science/author/tom-ayoola\\" target=\\"_blank\\">Tom Ayoola</a></ins></p>\n</li>\\n<li>\\n<p><ins><a href=\\"https://www.amazon.science/publications/expanding-end-to-end-question-answering-on-differentiable-knowledge-graphs-with-intersection\\" target=\\"_blank\\"><strong>Expanding end-to-end question answering on differentiable knowledge graphs with intersection</strong></a></ins><br />\\n<ins><a href=\\"https://www.amazon.science/author/priyanka-sen\\" target=\\"_blank\\">Priyanka Sen</a></ins>, <ins><a href=\\"https://www.amazon.science/author/amir-saffari\\" target=\\"_blank\\">Amir Saffari</a></ins>, Armin Oliya</p>\n</li>\\n<li>\\n<p><ins><a href=\\"https://www.amazon.science/publications/fewshotqa-a-framework-for-few-shot-learning-of-question-answering-tasks-using-pre-trained-text-to-text-models\\" target=\\"_blank\\"><strong>FewshotQA: A framework for few-shot learning of question answering tasks using pre-trained text-to-text models</strong></a></ins><br />\\n<ins><a href=\\"https://www.amazon.science/author/rakesh-chada\\" target=\\"_blank\\">Rakesh Chada</a></ins>, <ins><a href=\\"https://www.amazon.science/author/pradeep-natarajan\\" target=\\"_blank\\">Pradeep Natarajan</a></ins></p>\n</li>\\n<li>\\n<p><ins><a href=\\"https://www.amazon.science/publications/generating-self-contained-and-summary-centric-question-answer-pairs-via-differentiable-reward-imitation-learning\\" target=\\"_blank\\"><strong>Generating self-contained and summary-centric question answer pairs via differentiable reward imitation learning</strong></a></ins><br />\\n<ins><a href=\\"https://www.amazon.science/author/li-zhou\\" target=\\"_blank\\">Li Zhou</a></ins>, <ins><a href=\\"https://www.amazon.science/author/kevin-small\\" target=\\"_blank\\">Kevin Small</a></ins>, <ins><a href=\\"https://www.amazon.science/author/yong-zhang\\" target=\\"_blank\\">Yong Zhang</a></ins>, <ins><a href=\\"https://www.amazon.science/author/sandeep-atluri\\" target=\\"_blank\\">Sandeep Atluri</a></ins></p>\n</li>\\n<li>\\n<p><ins><a href=\\"https://www.amazon.science/publications/will-this-question-be-answered-question-filtering-via-answer-model-distillation-for-efficient-question-answering\\" target=\\"_blank\\"><strong>Will this question be answered? Question filtering via answer model distillation for efficient question answering</strong></a></ins><br />\\n<ins><a href=\\"https://www.amazon.science/author/siddhant-garg\\" target=\\"_blank\\">Siddhant Garg</a></ins>, <ins><a href=\\"https://www.amazon.science/author/alessandro-moschitti\\" target=\\"_blank\\">Alessandro Moschitti</a></ins></p>\n</li>\\n<li>\\n<p><ins><a href=\\"https://www.amazon.science/publications/reference-based-weak-supervision-for-answer-sentence-selection-using-web-data\\" target=\\"_blank\\"><strong>Reference-based weak supervision for answer sentence selection using web data</strong></a></ins><br />\\nVivek Krishnamurthy, <ins><a href=\\"https://www.amazon.science/author/thuy-vu\\" target=\\"_blank\\">Thuy Vu</a></ins>, <ins><a href=\\"https://www.amazon.science/author/alessandro-moschitti\\" target=\\"_blank\\">Alessandro Moschitti</a></ins></p>\n</li>\\n</ul>\n<p>Amazon Web Services researchers address questions of <strong>fairness</strong> in a paper on <ins><a href=\\"https://www.amazon.science/blog/emnlp-mitigating-bias-and-getting-closer-to-the-user\\" target=\\"_blank\\">mitigating gender bias</a></ins> in machine translation models.</p>\n<ul>\\n<li><ins><a href=\\"https://www.amazon.science/publications/gfst-gender-filtered-self-training-for-more-accurate-gender-in-translation\\" target=\\"_blank\\"><strong>GFST: Gender-filtered self-training for more accurate gender in translation</strong></a></ins><br />\\nPrafulla Kumar Choubey, <ins><a href=\\"https://www.amazon.science/author/anna-currey\\" target=\\"_blank\\">Anna Currey</a></ins>, <ins><a href=\\"https://www.amazon.science/author/prashant-mathur\\" target=\\"_blank\\">Prashant Mathur</a></ins>, <ins><a href=\\"https://www.amazon.science/author/georgiana-dinu\\" target=\\"_blank\\">Georgiana Dinu</a></ins></li>\n</ul>\\n<p>In the area of <strong>information retrieval</strong>, Amazon papers investigate an integrated model for conversational search and the identification of counterfactual claims in product reviews that can create a misleading impression of the reviewer’s sentiment.</p>\\n<ul>\\n<li>\\n<p><ins><a href=\\"https://www.amazon.science/publications/end-to-end-conversational-search-for-online-shopping-with-utterance-transfer\\" target=\\"_blank\\"><strong>End-to-end conversational search for online shopping with utterance transfer</strong></a></ins><br />\\nLiqiang Xiao, <ins><a href=\\"https://www.amazon.science/author/jun-ma\\" target=\\"_blank\\">Jun Ma</a></ins>, Xin Luna Dong, Pascual Martinez-Gomez, <ins><a href=\\"https://www.amazon.science/author/nasser-zalmout\\" target=\\"_blank\\">Nasser Zalmout</a></ins>, <ins><a href=\\"https://www.amazon.science/author/chenwei-zhang\\" target=\\"_blank\\">Chenwei Zhang</a></ins>, <ins><a href=\\"https://www.amazon.science/author/tong-zhao\\" target=\\"_blank\\">Tong Zhao</a></ins>, Hao He, Yaohui Jin</p>\n</li>\\n<li>\\n<p><ins><a href=\\"https://www.amazon.science/publications/i-wish-i-would-have-loved-this-one-but-i-didnt-a-multilingual-dataset-for-counterfactual-detection-in-product-reviews\\" target=\\"_blank\\"><strong>I wish I would have loved this one, but I didn’t: A multilingual dataset for counterfactual detection in product reviews</strong></a></ins><br />\\nJames O’Neill, <ins><a href=\\"https://www.amazon.science/author/polina-rozenshtein\\" target=\\"_blank\\">Polina Rozenshtein</a></ins>, <ins><a href=\\"https://www.amazon.science/author/ryuichi-kiryo\\" target=\\"_blank\\">Ryuichi Kiryo</a></ins>, <ins><a href=\\"https://www.amazon.science/author/motoko-kubota\\" target=\\"_blank\\">Motoko Kubota</a></ins>, <ins><a href=\\"https://www.amazon.science/author/danushka-bollegala\\" target=\\"_blank\\">Danushka Bollegala</a></ins></p>\n</li>\\n</ul>\n<p>A pair of Amazon papers look at the type of <strong>language modeling</strong> that accounts for so much of the recent success of natural-language-processing models.</p>\\n<ul>\\n<li><ins><a href=\\"https://www.amazon.science/publications/how-much-pretraining-data-do-language-models-need-to-learn-syntax\\" target=\\"_blank\\"><strong>How much pretraining data do language models need to learn syntax?</strong></a></ins><br />\\nLaura Perez-Mayos, <ins><a href=\\"https://www.amazon.science/author/miguel-ballesteros\\" target=\\"_blank\\">Miguel Ballesteros</a></ins>, Leo Wanner</li>\n<li><ins><a href=\\"https://www.amazon.science/publications/using-optimal-transport-as-alignment-objective-for-fine-tuning-multilingual-contextualized-embeddings\\" target=\\"_blank\\"><strong>Using optimal transport as alignment objective for fine-tuning multilingual contextualized embeddings</strong></a></ins><br />\\n<ins><a href=\\"https://www.amazon.science/author/sawsan-alqahtan\\" target=\\"_blank\\">Sawsan Alqahtani</a></ins>, <ins><a href=\\"https://www.amazon.science/author/garima-lalwani\\" target=\\"_blank\\">Garima Lalwani</a></ins>, <ins><a href=\\"https://www.amazon.science/author/yi-zhang\\" target=\\"_blank\\">Yi Zhang</a></ins>, <ins><a href=\\"https://www.amazon.science/author/salvatore-romeo\\" target=\\"_blank\\">Salvatore Romeo</a></ins>, <ins><a href=\\"https://www.amazon.science/author/saab-mansour\\" target=\\"_blank\\">Saab Mansour</a></ins></li>\n</ul>\\n<p>Alexa researchers combined data mixing and elastic weight consolidation to improve the adaptation of <strong>machine translation</strong> models to new tasks.</p>\\n<ul>\\n<li><ins><a href=\\"https://www.amazon.science/publications/improving-the-quality-trade-off-for-neural-machine-translation-multi-domain-adaptation\\" target=\\"_blank\\"><strong>Improving the quality trade-off for neural machine translation multi-domain adaptation</strong></a></ins><br />\\n<ins><a href=\\"https://www.amazon.science/author/eva-hasler\\" target=\\"_blank\\">Eva Hasler</a></ins>, <ins><a href=\\"https://www.amazon.science/author/tobias-domhan\\" target=\\"_blank\\">Tobias Domhan</a></ins>, <ins><a href=\\"https://www.amazon.science/author/jonay-trenous\\" target=\\"_blank\\">Jonay Trenous</a></ins>, <ins><a href=\\"https://www.amazon.science/author/ke-tran\\" target=\\"_blank\\">Ke Tran</a></ins>, <ins><a href=\\"https://www.amazon.science/author/bill-bryne\\" target=\\"_blank\\">Bill Byrne</a></ins>, <ins><a href=\\"https://www.amazon.science/author/felix-hieber\\" target=\\"_blank\\">Felix Hieber</a></ins></li>\n</ul>\\n<p><strong>Paraphrase generation</strong> varies the surface form of sentences while preserving their semantic content, so it can help augment training data for other natural-language-processing tasks.</p>\\n<ul>\\n<li><ins><a href=\\"https://www.amazon.science/publications/learning-to-selectively-learn-for-weakly-supervised-paraphrase-generation\\" target=\\"_blank\\"><strong>Learning to selectively learn for weakly-supervised paraphrase generation</strong></a></ins><br />\\nKaize Ding, <ins><a href=\\"https://www.amazon.science/author/dingcheng-li\\" target=\\"_blank\\">Dingcheng Li</a></ins>, <ins><a href=\\"https://www.amazon.science/author/alexander-hanbo-li\\" target=\\"_blank\\">Alexander Hanbo Li</a></ins>, <ins><a href=\\"https://www.amazon.science/author/xing-fan\\" target=\\"_blank\\">Xing Fan</a></ins>, <ins><a href=\\"https://www.amazon.science/author/chenlei-guo\\" target=\\"_blank\\">Chenlei (Edward) Guo</a></ins>, <ins><a href=\\"https://www.amazon.science/author/yang-liu\\" target=\\"_blank\\">Yang Liu</a></ins>, Huan Liu</li>\n</ul>\\n<p><strong>Self-learning</strong> is the use of implicit feedback signals to automatically improve machine learning models, without the need for human intervention.</p>\\n<p><img src=\\"https://dev-media.amazoncloud.cn/6b343e71d0fe40f5862071328cd3e4ef_image.png\\" alt=\\"image.png\\" /></p>\n<p>Interrupting a conversational-AI agent to rephrase a request provides an implicit-feedback signal that can be used to automatically label training data, which can help improve the underlying machine learning model. Figure from “A scalable framework for learning from implicit user feedback to improve natural language understanding in large-scale conversational AI systems”.</p>\n<ul>\\n<li>\\n<p><ins><a href=\\"https://www.amazon.science/publications/a-scalable-framework-for-learning-from-implicit-user-feedback-to-improve-natural-language-understanding-in-large-scale-conversational-ai-systems\\" target=\\"_blank\\"><strong>A scalable framework for learning from implicit user feedback to improve natural language understanding in large-scale conversational AI systems</strong></a></ins><br />\\n<ins><a href=\\"https://www.amazon.science/author/sunghyun-park\\" target=\\"_blank\\">Sunghyun Park</a></ins>, <ins><a href=\\"https://www.amazon.science/author/han-li\\" target=\\"_blank\\">Han Li</a></ins>, <ins><a href=\\"https://www.amazon.science/author/ameen-patel\\" target=\\"_blank\\">Ameen Patel</a></ins>, Sidharth Mudgal, <ins><a href=\\"https://www.amazon.science/author/sungjin-lee\\" target=\\"_blank\\">Sungjin Lee</a></ins>, Young-Bum Kim, <ins><a href=\\"https://www.amazon.science/author/spyros-matsoukas\\" target=\\"_blank\\">Spyros Matsoukas</a></ins>, <ins><a href=\\"https://www.amazon.science/author/ruhi-sarikaya\\" target=\\"_blank\\">Ruhi Sarikaya</a></ins></p>\n</li>\\n<li>\\n<p><ins><a href=\\"https://www.amazon.science/publications/contextual-rephrase-detection-for-reducing-friction-in-dialogue-system\\" target=\\"_blank\\"><strong>Contextual rephrase detection for reducing friction in dialogue system</strong></a></ins><br />\\nZhuoyi Wang, <ins><a href=\\"https://www.amazon.science/author/saurabh-gupta\\" target=\\"_blank\\">Saurabh Gupta</a></ins>, <ins><a href=\\"https://www.amazon.science/author/jie-hao\\" target=\\"_blank\\">Jie Hao</a></ins>, <ins><a href=\\"https://www.amazon.science/author/xing-fan\\" target=\\"_blank\\">Xing Fan</a></ins>, <ins><a href=\\"https://www.amazon.science/author/dingcheng-li\\" target=\\"_blank\\">Dingcheng Li</a></ins>, <ins><a href=\\"https://www.amazon.science/author/alexander-hanbo-li\\" target=\\"_blank\\">Alexander Hanbo Li</a></ins>, <ins><a href=\\"https://www.amazon.science/author/chenlei-guo\\" target=\\"_blank\\">Chenlei (Edward) Guo</a></ins></p>\n</li>\\n</ul>\n<p><strong>Text summarization</strong> is a widely studied problem in natural-language processing, and a new paper from Amazon Web Services considers the particular problems it presents in the context of dialogue.</p>\\n<ul>\\n<li><ins><a href=\\"https://www.amazon.science/publications/a-bag-of-tricks-for-dialogue-summarization\\" target=\\"_blank\\"><strong>A bag of tricks for dialogue summarization</strong></a></ins><br />\\nMuhammad Khalifa, <ins><a href=\\"https://www.amazon.science/author/miguel-ballesteros\\" target=\\"_blank\\">Miguel Ballesteros</a></ins>, <ins><a href=\\"https://www.amazon.science/author/kathleen-mckeown\\" target=\\"_blank\\">Kathleen McKeown</a></ins></li>\n</ul>\\n<p>For more on Amazon’s involvement at EMNLP, see our <ins><a href=\\"https://www.amazon.science/blog/emnlp-mitigating-bias-and-getting-closer-to-the-user\\" target=\\"_blank\\">interview with Georgiana Dinu</a></ins>, an applied scientist with Amazon Web Services and a conference area chair for machine learning for natural-language-processing.</p>\n<p>ABOUT THE AUTHOR</p>\n<h4><a id=\\"Larry_Hardestyhttpswwwamazonscienceauthorlarryhardesty_100\\"></a><strong><a href=\\"https://www.amazon.science/author/larry-hardesty\\" target=\\"_blank\\">Larry Hardesty</a></strong></h4>\n<p>Larry Hardesty is the editor of the Amazon Science blog. Previously, he was a senior editor at MIT Technology Review and the computer science writer at the MIT News Office.</p>\n"}
目录
亚马逊云科技解决方案 基于行业客户应用场景及技术领域的解决方案
联系亚马逊云科技专家
亚马逊云科技解决方案
基于行业客户应用场景及技术领域的解决方案
联系专家
0
目录
关闭